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ABSTRACT 

A triangulation of a 2-manifold M is said to be minimal provided one cannot 
produce a triangulation of M with fewer vertices by shrinking an edge. In this 
paper we prove that all 2-manifolds have finitely many minimal trian- 
gulations. It follows that all triangulations of a given 2-manifold can be 
generated from the minimal triangulations by a process called vertex splitting. 

1. Introduction 

A well-known theorem of  Steinitz [4] states that  the triangulations o f  the 

2-sphere can be generated from the boundary  o f  the tehrahedron by a process 

called vertex splitting. In a previous paper [2] the authors showed that  for any 

orientable 2-manifold M there exists a finite set o f  triangulations such that  all 

triangulations of  M can be generated from them by vertex splitting. In this 

paper we extend this result to all 2-manifolds and we show that  our algebraic 

arguments in [2] can be replaced by a simpler combinatorial  argument.  

2. Definitions and notation 

All manifolds in this paper are compact  2-dimensional manifolds.  

By a circuit in a triangulation T of  a manifold  M we mean a sequence o f  

edges el, e2, • . . ,  ek such that  e; ¢3 ei + 1 is a vertex for i -- 1 , . . . ,  k - 1, ek N e~ is 

a vertex and other intersections of  the ei's are empty.  I f  a circuit has exactly k 

edge it will be called a k-circuit. 
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The intersections of consecutive edges will be called the vertices of the 
circuit. We shall often denote a circuit by listing the vertices in the order that is 
induced by the order of the edges. We shall also denote an edge with vertices x 
and y by xy. 

Let xy be an edge of a triangulation T o f  a manifold M. Let S be the union of 
all triangles of T meeting x or y and let B be the boundary of S. Let V be a set 
consisting of a point v and all triangles of the form vst where st is an edge orB. 
If we obtain a triangulation Tt of M by replacing S with V we say that T~ is 
obtained from T by shrinking xy and that T is obtained from T~ by splitting v. 
The edge xy is called a shrinkable edge. 

A triangulation T of a manifold M is called minimal if and only if no edge is 
shrinkable. Clearly all triangulations of M can be generated from the set of 
minimal triangulations by vertex splitting. 

A 3-circuit in a triangulation T of M will be called planar provided it bounds 
a subset of M that is a cell, otherwise it will be called nonplanar. In [2] the 
authors showed that if M is not the sphere then a triangulation is minimal if 
and only if each edge belongs to a nonplanar 3-circuit. 

If we have a graph G embedded in a manifold M then the faces of G are the 
connected components o f M  - G. Since Mis  locally Euclidean, each edge of G 
is locally 2-sided. If, locally, both sides of an edge e belong to the same face F 
we shall say that e is a 1-sided edge of F,  otherwise e will be called a 2-sided 
edge. By the number of edges of Fwe shall mean the number of 2-sided edges in 
the boundary of Fplus twice the number of 1-sided edges in the boundary ofF.  

For any subset A of M, we denote by .4 the topological closure of A. 

3. The main theorems 

In [2] our proof that there were finitely many minimal triangulations was 

done by induction on the genus. In that argument, when the genus was reduced 
we then had triangulations which were not necessarily minimal. We reduced 
these to minimal triangulations by shrinking edges. The proof of the theorem 
then depended on showing a bound on the number of these shrinkings, that 

depended only on the genus. 
The bound on the number of shrinkings was a consequence of a bound on 

the number of simple pairwise nonhomotopic curves meeting only at a base 
point, that can exist in an orientable manifold of a given genus. 

We shall now show how to obtain such a bound for all 2-manifolds. 

THEOREM 1. Let M be a 2-manifold other than the sphere or projective 
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plane. Let E = {el, . . . .  en } be a family  o f  simple closed curves in a 2-manifold 

M,  satisfying 

H,: ei • ej = (v}, i f i  ¢:j, 

H2: ei is not homotopic in M to ej, i f i  v~ j ,  

H3: all e~ are homotopically nontrivial in M.  

Let  G be the graph represented by E.  Then E can be extended to a family  

E '  = {el, • • •, e~, e~+l . . . . .  e~+k}, also satisfying HI - H3, and representing a 

graph G' in which each face has at least 3 edges. 

We will begin with the followig Icmma, which will provide the basis for an 

inductive proof of Theorem I. 

LEMMA 1. Let F be an open surface, having genus g > O. Let  the bound- 
ary o f  F be the wedge product o f  simple closed curves el v e2 v . . .  v e,, 
r > 1, such that ei A ej = {v}, for  i ¢~ j .  Then there exists a simple closed curve 
e ,  in F, such that 

(i) e .  N ei = {v},for i ffi 1, 2 , . . . ,  r. 

(ii) e .  is not homotopic in F to ei, for i = 1, 2 . . . .  , r. 
(iii) e .  is homotopically nontrivial in i¢. 

PROOF. If  F is orientable, then it is homeomorphic to a sphere with g 

handles, and r boundary components. It follows from the classification 

theorem for orientable surfaces [see, for example, Massey's Algebraic 
Topology] that the fundamental group o f F h a s  2g + r generators, which can be 

represented by the curves e~ . . . .  , er, plus 2g additional closed curves based at 

v. Examination of  the single relation between these generators shows that (ii) is 

satisfied. Therefore there is at least one such curve, e . .  I f  F is nonorientable, 

then the fundamental group has g + r generators, which can be represented by 

the curves e~ . . . . .  e,, plus g additional closcd curves based at v. This proves the 

lemma. 

PROOF OF THEOREM I. Let F~ be a face of G, whose boundary consists of 
less than three edges, and assume that F~ is a face of largest genus g >= 0, having 

this property. 

Case 1. F~ has exactly one boundary component, OF~ = en, which is 

counted as one edge of  Fi (i.e. en is a 2-sided edge of  F~). 
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I fg  = 0, then Fi is an open disc, so en is nullhomotopic in Fi, and hence also 

in M. This contradicts Hs. 
I fg  > 0, then F~ is an open surface, possibly nonorientable, having OFi = en. 

By Lemma 1 there exists a simple closed curve e .  in F, such that 

(iv) e ,  O e,, = {v}, 

(v) e ,  is not homotopic in le~ to e~, 

(vi) e ,  is not nuUhomotopic in ~e. 

We will show that the family {e~ . . . .  , e~, e,} satisfies H~-Hs. 

If e ,  is nullhomotopic in M there is an open disc D in M, such that OD = e , .  

By (vi) D is not contained in F~, so that D O (M - Fi) ~ ~ .  Since D meets 

each of the open sets F~ and M -  (F~), it must meet their intersection, so 

D nen  ~ Z~. Furthermore, D O en is an open subset of  e~, in the relative 

topology. If D n e~ ~ en - {v} then (OD) n e~ = e ,  n e~ ~ {v}, contradicting 
(iv). I fD  O e~ -- en - {v} then e~ C D, and therefore en is null homotopic in M, 

contradicting Hs. 

I f e ,  is homotopic i n M t o  some ej, for j  = 1 , . . . ,  n - 1 then there is an open 

surface S in M such that 0S = ej v e, .  Since S intersects both F~ and M - F~, it 

must intersect OFi = en. ~ is in fact homeomorphic to the reduced suspension 

of  e , ,  from which it follows that ife~ is contained in ~ then e~ is homotopic in 

M to ej. If e~ is not contained in ~q, the same argument as in the previous case 

implies ej n e~ ~ {v}. 
Finally we will show that e .  cannot be homotopic in M to e~. Assuming such 

a homotopy exists, there is an open surface S in M, with OS = en v e . .  

If S n F~ and S n (M - / r )  are both nonempty, then so is S n e~. But S is 

open, and e~ c OS, which is a contradiction. If  S N (M--~¢~) = ~ ,  then 

S c / ~ ,  contradicting (v). 

Case 2. Fi has exactly one boundary component OF~ = e~, which is 

counted as two edges of F~ (i.e. e~ is a 1-sided edge of F~). 

If g = 0 then ~¢~ is a closed disc with its boundary identified so that OF~ is a 

1-sided curve, thus Fi is a projective plane and F~ = M, thus M is a projective 

plane. 

If g > 0 then the argument in Case 1 applies. 

Case 3. Fi has exactly two boundary components, en_ l and e~. 
I fg  = 0, then F~ is an open disc having boundary OF~ = e~ _ ~ v e~. In this case 

e~_ ~ is clearly homotopic to en in -#t, and hence also in M. 

If g > 0, then F~ is a open surface (possibly nonorientable) with OF~ = 

e~_ ~ ven.  Again by Lemma 1 there exists a curve e .  in Fi satisfying (iv)-(vi). 
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Exactly as in Case 1, we can show that the family of curves {e~, . . . ,  en, e,} also 

satisfies H~-H3. 
The preceding arguments show that the family {el . . . . .  en, e,} satisfy the 

hypotheses H1-H3. The process of adding the curve e ,  to the family E replaces 
the face F~ by one or two faces of genus g'  < g. Since M has a finite number of 
faces the procedure terminates after a finite number of steps, which proves that 
all faces of  maximum genus having one or two boundary components can be 
eliminated. 

COROLLARY 1. I f  M is not the sphere or projective plane, then any family E 
of  homotopically nontrivial simple pairwise nonhomotopic curves meeting at a 
base point v in M has at most 6g - 3 members when M is orientable, and 3g 
members when M is nonorientable, where g is the genus of  M. 

PROOF. We extend E to a family E '  satisfying H 1 - H  3 and such that 
each face has at least 3 edges. Let G be the graph represented by E'. Let G 
have v vertices, e edges and F faces. Standard counting arguments now show 
that 2e >_- 3f, which together with Euler's inequality (v - e + f>_- 2 - 2g) for 
orientable manifolds and v - e  + f > _ - 1 - g  for nonorientable manifolds 
implies that e < 6g - 3 for orientable manifolds and e _-< 3g for nonorientable 
manifolds. 

This corollary fills an omission in [2] where we assumed any such family of 
curves belongs to a maximal family. Although the existence of the maximal 
family does follow from the algebraic argument in [2] it was not so stated. 

THEOREM 2. I f  M is a manifold of  genus g, then there are finitely many 
minimal triangulations of M. 

PROOF. The proof is like the proof in [2] with only slight differences. We 
shall point out the differences and refer the reader to [2] for a complete 
exposition of the argument. 

The Theorem is known for g = 0 and orientable genus 1 (see [1], [3] and [4]). 

If M is any other manifold, let T be a minimal triangulation of M. We cut M 
along a nonplanar 3-circuit xyz. If the result of this cut is a set (consisting of 
one or two manifolds with boundary) with two bounding 3-circuits, then the 

argument is identical to [2]. In the nonorientable case, however, we may obtain 
a manifold with a bounding 6-circuit C (in the case where xyz has a neighbor- 
hood that is a M6bius strip). To this manifold with boundary we attach a cell 
consisting of all triangles of the form wab where w is a point not in M a n d  ab is 
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an edge of C. This produces a triangulation 7"1 of a new manifold MI of genus g 
less than the genus of M. 

We now produce a minimal triangulation M* from M~ by shrinking edges. 
Recall that the only possible shrinkable edges in Ml will be those that do not 
belong to any nonplanar 3-circuit in M~, and that all edges of M belong to 
nonplanar 3-circuits. 

The only possible shrinkable eges Of Ml are thus edges of 3-circuits homoto- 
pic to C in M~, edges belonging to nonplanar 3-circuits meeting x, y or z in M, 
and edges meeting w. In [2] we show that there is a bound depending only on g 
on the number of edges of the first two types. Since there are just six edges 
meeting w, there is a bound on the number of shrinkable edges. 

Since shrinking an edge does not change the homotopy type of any 3-circuit, 
this puts a bound on the number of edge shrinkings necessary to produce M*. 

By induction there are only finitely many combinatorial types for M*. As is 
shown in [2], it follows that there are only finitely many combinatorial types 
for M~ and thus also for M. 
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